[深度学习] 自然语言处理--- 基于Keras Bert使用(上)

作者 : 前沿资讯 本文共6174个字,预计阅读时间需要16分钟 发布时间: 2020-03-9 共222人阅读

1. bert  ---- keras

keras_bert 是 CyberZHG 封装好了Keras版的Bert,可以直接调用官方发布的预训练权重。

github:https://github.com/CyberZHG/keras-bert

快速安装:pip install keras-bert 

 

bert4keras是封装好了Keras版的Bert,可以直接调用官方发布的预训练权重。(支持tf2)

github:https://github.com/bojone/bert4keras

快速安装:pip install git+https://www.github.com/bojone/bert4keras.git

 

2.keras_bert

2.1.Tokenizer

在 keras-bert 里面,使用 Tokenizer 会将文本拆分成字并生成相应的id。

我们需要提供一个字典,字典存放着 token 和 id 的映射。字典里还有 BERT 里特别的 token。

[CLS],[SEP],[UNK]等

在下面的示例中,如果文本拆分出来的字在字典不存在,它的 id 会是 5,代表 [UNK],即 unknown

[深度学习] 自然语言处理--- 基于Keras Bert使用(上)

 

我们用同样的字典,拆分不存在 字典 中的单词,结果如下,可以看到英语中会直接把不存在字典中的部分直接按字母拆分

如果输入两句话的例子,encode 函数中 我们可以带上参数 max_len,只看文本拆分出来的 max_len 个字

如果拆分完的字不超过max_len,则用 0 填充

[深度学习] 自然语言处理--- 基于Keras Bert使用(上)

 

2.2.使用预训练模型

参考地址:https://github.com/CyberZHG/keras-bert/tree/master/demo

我们可以使用 load_trained_model_from_checkpoint() 函数使用本地已经下载好的预训练模型,

可以从 BERT 的 github 上获取下载地址

谷歌BERT地址:https://github.com/google-research/bert

中文预训练BERT-wwm:https://github.com/ymcui/Chinese-BERT-wwm

下面是使用预训练模型提取输入文本的特征

 import os  # 设置预训练模型的路径 pretrained_path = 'chinese_L-12_H-768_A-12' config_path = os.path.join(pretrained_path, 'bert_config.json') checkpoint_path = os.path.join(pretrained_path, 'bert_model.ckpt') vocab_path = os.path.join(pretrained_path, 'vocab.txt')  # 构建字典 # keras_bert 中的 load_vocabulary() 函数 传入 vocab_path 即可 from keras_bert import load_vocabulary token_dict = load_vocabulary(vocab_path)   # import codecs # token_dict = {} # with codecs.open(vocab_path, 'r', 'utf8') as reader: #     for line in reader: #         token = line.strip() #         token_dict[token] = len(token_dict)   # Tokenization from keras_bert import Tokenizer tokenizer = Tokenizer(token_dict)   # 加载预训练模型 from keras_bert import load_trained_model_from_checkpoint model = load_trained_model_from_checkpoint(config_path, checkpoint_path) 
 text = '语言模型' tokens = tokenizer.tokenize(text) # ['[CLS]', '语', '言', '模', '型', '[SEP]'] indices, segments = tokenizer.encode(first=text, max_len=512) print(indices[:10]) print(segments[:10])  # 提取特征 import numpy as np predicts = model.predict([np.array([indices]), np.array([segments])])[0] for i, token in enumerate(tokens):     print(token, predicts[i].tolist()[:5])

[深度学习] 自然语言处理--- 基于Keras Bert使用(上)

 

 text1 = '语言模型' text2 = "你好" tokens1 = tokenizer.tokenize(text1) print(tokens1) tokens2 = tokenizer.tokenize(text2) print(tokens2)  indices_new, segments_new = tokenizer.encode(first=text1, second=text2 ,max_len=512) print(indices_new[:10]) # [101, 6427, 6241, 3563, 1798, 102, 0, 0, 0, 0] print(segments_new[:10]) # [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]  # 提取特征 import numpy as np predicts_new = model.predict([np.array([indices_new]), np.array([segments_new])])[0] for i, token in enumerate(tokens1):     print(token, predicts_new[i].tolist()[:5]) for i, token in enumerate(tokens2):     print(token, predicts_new[i].tolist()[:5])

[深度学习] 自然语言处理--- 基于Keras Bert使用(上)

 #加载语言模型 model = load_trained_model_from_checkpoint(config_path, checkpoint_path, training=True)  token_dict_rev = {v: k for k, v in token_dict.items()}  token_ids, segment_ids = tokenizer.encode(u'数学是利用符号语言研究数量、结构、变化以及空间等概念的一门学科', max_len=512) # mask掉“技术” token_ids[1] = token_ids[2] = tokenizer._token_dict['[MASK]'] masks = np.array([[0, 1, 1] + [0] * (512 - 3)])  # 模型预测被mask掉的部分 predicts = model.predict([np.array([token_ids]), np.array([segment_ids]), masks])[0] pred_indice = probas[0][1:3].argmax(axis=1).tolist() print('Fill with: ', list(map(lambda x: token_dict_rev[x], pred_indice))) # Fill with:  ['数', '学']

 

3 bert4keras

3.1 函数介绍

keras4bert 是基于 keras-bert 重新编写的一个 keras 版的 bert,

可以适配 albert,只需要在 build_bert_model 函数里加上model='albert'

使用体验和 keras_bert 差不多,下面是 github 提供的使用例子。

SimpleTokenizer是一个简单的分词器,直接将文本分割为单字符序列,专为中文处理设计,原则上只适用于中文模型。

build_bert_model 可用参数如下

  • config_path:JSON 配置文件路径
  • checkpoint_file:checkponit 文件路径
  • with_mlm:是否包含 MLM 部分,默认 False
  • with_pool:是否包含 POOL 部分,默认 False
  • with_nsp:是否包含 NSP 部分,默认 False
  • keep_words:要保留的词ID列表
  • model:可以定义为 albert 模型, 默认 bert
  • applications:  'encoder': BertModel, 'seq2seq': Bert4Seq2seq, 'lm': Bert4LM  , 默认 encoder

 

3.2 使用预训练模型

参考地址:https://github.com/bojone/bert4keras/blob/master/examples

我们可以使用 load_trained_model_from_checkpoint() 函数使用本地已经下载好的预训练模型,

可以从 BERT 的 github 上获取下载地址

谷歌BERT地址:https://github.com/google-research/bert

中文预训练BERT-wwm:https://github.com/ymcui/Chinese-BERT-wwm

下面是使用预训练模型提取输入文本的特征

 import os  # 设置预训练模型的路径 pretrained_path = 'chinese_L-12_H-768_A-12' config_path = os.path.join(pretrained_path, 'bert_config.json') checkpoint_path = os.path.join(pretrained_path, 'bert_model.ckpt') vocab_path = os.path.join(pretrained_path, 'vocab.txt')  from bert4keras.backend import keras, set_gelu from bert4keras.tokenizer import Tokenizer from bert4keras.bert import build_bert_model from bert4keras.optimizers import Adam, extend_with_piecewise_linear_lr from bert4keras.snippets import sequence_padding, DataGenerator from keras.layers import *    # import codecs # token_dict = {} # with codecs.open(vocab_path, 'r', 'utf8') as reader: #     for line in reader: #         token = line.strip() #         token_dict[token] = len(token_dict)   # 建立分词器 tokenizer = Tokenizer(vocab_path) # 构建字典 token_dict = tokenizer._token_dict   # 加载预训练模型 model = build_bert_model(config_path=config_path, checkpoint_path=checkpoint_path) 
 text = '语言模型' tokens = tokenizer.tokenize(text) # ['[CLS]', '语', '言', '模', '型', '[SEP]'] indices, segments = tokenizer.encode(text, max_length=512) print(indices[:10]) print(segments[:10])  # 提取特征 import numpy as np predicts = model.predict([np.array([indices]), np.array([segments])])[0] for i, token in enumerate(tokens):     print(token, predicts[i].tolist()[:5])

[深度学习] 自然语言处理--- 基于Keras Bert使用(上)

 

 text1 = '语言模型' text2 = "你好" tokens1 = tokenizer.tokenize(text1) print(tokens1) tokens2 = tokenizer.tokenize(text2) print(tokens2)  indices_new, segments_new = tokenizer.encode(text1, text2 ,max_length=512) print(indices_new[:10]) # [101, 6427, 6241, 3563, 1798, 102, 0, 0, 0, 0] print(segments_new[:10]) # [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]  # 提取特征 import numpy as np predicts_new = model.predict([np.array([indices_new]), np.array([segments_new])])[0] for i, token in enumerate(tokens1):     print(token, predicts_new[i].tolist()[:5]) for i, token in enumerate(tokens2):     print(token, predicts_new[i].tolist()[:5])

[深度学习] 自然语言处理--- 基于Keras Bert使用(上)

 #加载语言模型 model = build_bert_model(config_path=config_path, checkpoint_path=checkpoint_path, with_mlm=True)   token_ids, segment_ids = tokenizer.encode(u'科学技术是第一生产力') # mask掉“技术” token_ids[3] = token_ids[4] = token_dict['[MASK]']  # 用mlm模型预测被mask掉的部分 probas = model.predict([np.array([token_ids]), np.array([segment_ids])])[0] print(tokenizer.decode(probas[3:5].argmax(axis=1))) # 结果正是“技术”   token_ids, segment_ids = tokenizer.encode(u'数学是利用符号语言研究数量、结构、变化以及空间等概念的一门学科') # mask掉“技术” token_ids[1] = token_ids[2] = tokenizer._token_dict['[MASK]']  # 用mlm模型预测被mask掉的部分 probas = model.predict([np.array([token_ids]), np.array([segment_ids])])[0] print(tokenizer.decode(probas[1:3].argmax(axis=1))) # 结果正是“数学”

 

 

  • 版权声明:文章来源于网络采集,版权归原创者所有,均已注明来源,如未注明可能来源未知,如有侵权请联系管理员删除。
1. 本站所有资源来源于网络和用户上传,如有侵权请联系站长或邮件至[email protected]
2. 本站分享目的仅供大家学习和交流,您必须在下载后24小时内删除!
3. 不得使用于非法商业用途,商用请支持正版!不得违反国家法律,否则后果自负!
4. 本站提供的源码、模板、插件等等其他资源,都不包含技术服务请大家谅解!
5. 如有链接无法下载、失效或广告,请联系管理员处理!
6. 本站资源售价只是赞助,收取费用仅维持本站的日常运营所需!

小七博客 » [深度学习] 自然语言处理--- 基于Keras Bert使用(上)

Leave a Reply

售后服务:

  • 售后服务范围 1、商业模板使用范围内问题免费咨询
    2、源码安装、模板安装(一般 ¥50-300)服务答疑仅限SVIP用户
    3、单价超过200元的模板免费一次安装,需提供服务器信息。
    付费增值服务 1、提供dedecms模板、WordPress主题、discuz模板优化等服务请详询在线客服
    2、承接 WordPress、DedeCMS、Discuz 等系统建站、仿站、开发、定制等服务
    3、服务器环境配置(一般 ¥50-300)
    4、网站中毒处理(需额外付费,500元/次/质保三个月)
    售后服务时间 周一至周日(法定节假日除外) 9:00-23:00
    免责声明 本站所提供的模板(主题/插件)等资源仅供学习交流,若使用商业用途,请购买正版授权,否则产生的一切后果将由下载用户自行承担,有部分资源为网上收集或仿制而来,若模板侵犯了您的合法权益,请来信通知我们(Email: [email protected]),我们会及时删除,给您带来的不便,我们深表歉意!

Hi, 如果你对这款模板有疑问,可以跟我联系哦!

联系作者
赞助VIP 享更多特权,建议使用 QQ 登录
喜欢我嘛?喜欢就按“ctrl+D”收藏我吧!♡